
Static and Generic
Deobfuscation and
Devirtualization with LLVM
YUSUF "NACI" İŞLEK

bio
- Yusuf "naci" İşlek

- Researching obfuscation/deobfuscation

- https://github.com/NaC-L

https://github.com/NaC-L
https://github.com/NaC-L
https://github.com/NaC-L

The goal
- Understanding what obfuscation is

- Reducing effort for deobfuscating protected software

What is (vm based) obfuscation and why
is it an issue
A basic add function:

What is (vm based) obfuscation and why
is it an issue
Toy VM example:

https://godbolt.org/z/Yq3abMcao

https://godbolt.org/z/Yq3abMcao

Traditional ways to deal with VM based
protection
Static analysis of vm structure:

- Trying to understand each opcode and analysing the VM bytecode

- Time-consuming

- Becomes obsolete when VM structure is changed

- Need to anaylse the bytecode correctly and being able to understand what it does

Traditional ways to deal with VM based
protection
Dynamic analysis of vm structure:

- A function might have multiple, misdirecting behaviour

- VM protection might have Anti-emulation, Anti-VM, Anti-Debug

- VM content stays as a black box

What Mergen does different
What Mergen does different?

- Aims to be a generic solution

- Doesn’t execute any code, explores paths symbolicly

- Uses a technique called "dynamic lifting" to use compiler optimizations on obfuscation

https://github.com/NaC-L/Mergen

Workflow chart

What is "lifting"?
- Taking a lower level language and "lifting" into a higher level language.

- Instead of fetch/decode/execute, we do fetch/decode/transform

- In "dynamic lifting" we propagate the values

Why Lifting to LLVM IR is better?
- LLVM is a collection of compiler toolchains

- LLVM IR(Intermediate Representation) is between programming languages and assembly

- LLVM has built-in optimizations

- Single Static Assignment(SSA) format

- Being able to re-compile

Target: Toy VM
https://godbolt.org/z/Ke33Ph5so

https://godbolt.org/z/Ke33Ph5so

Unrolling the CFG of Toy VM

Results, unrolled & optimized

Results, compiled & decompiled

Target: Complex math function
https://godbolt.org/z/TvPnWqzvo

https://godbolt.org/z/TvPnWqzvo

Obfuscated with VMProtect 3.8

There are 37.077 blocks just like this =>

https://nac-l.github.io/assets/img/vmp38_def_branch.svg

https://nac-l.github.io/2025/01/25/lifting_0.html

https://nac-l.github.io/assets/img/vmp38_def_branch.svg
https://nac-l.github.io/assets/img/vmp38_def_branch.svg
https://nac-l.github.io/assets/img/vmp38_def_branch.svg
https://nac-l.github.io/2025/01/25/lifting_0.html
https://nac-l.github.io/2025/01/25/lifting_0.html
https://nac-l.github.io/2025/01/25/lifting_0.html

Results.
https://godbolt.org/z/qMxP7e55a

https://godbolt.org/z/qMxP7e55a

How fast it is?
310.327 total instruction

Mergen – 2.8s (exploration) + 2.5s (optimization) = 5.3s

Triton – 29.2s (exploration) + 32.12s (optimization) = 61.3s

Alternate usage ideas
- Optimizing software without source code

- Recompiling existing software into other platforms

- Inserting binary instrumentation for testing

Technical challenges
- Complex, unbounded loops (due to symbolic execution)

- Needs a bigger scope of context than other approaches

- Complex Mixed Boolen Arithmethics

Contributions
- Demonstrated a public, static, and generic methodology for deobfuscating and devirtualizing
x86_64 binaries.

- Provided new insights into the inner workings of commercial software protectors.

	Slayt 1: Static and Generic Deobfuscation and Devirtualization with LLVM
	Slayt 2: bio
	Slayt 3: The goal
	Slayt 4: What is (vm based) obfuscation and why is it an issue
	Slayt 5: What is (vm based) obfuscation and why is it an issue
	Slayt 6: Traditional ways to deal with VM based protection
	Slayt 7: Traditional ways to deal with VM based protection
	Slayt 8: What Mergen does different
	Slayt 9: Workflow chart
	Slayt 10: What is "lifting"?
	Slayt 11: Why Lifting to LLVM IR is better?
	Slayt 12: Target: Toy VM
	Slayt 13: Unrolling the CFG of Toy VM
	Slayt 14: Results, unrolled & optimized
	Slayt 15: Results, compiled & decompiled
	Slayt 16: Target: Complex math function
	Slayt 17: Obfuscated with VMProtect 3.8
	Slayt 18: Results.
	Slayt 19: How fast it is?
	Slayt 20: Alternate usage ideas
	Slayt 21: Technical challenges
	Slayt 22: Contributions

