
Understanding how
Mergen deobfuscates
VM-based obfuscations
YUSUF "NACI" İŞLEK

The goal

• Applying compiler optimizations to obfuscated code.

• Creating a fast and generic solution for lifting binaries.

What is Mergen
• Mergen is a symbolic execution engine and a lifter to LLVM IR.

• Designed for deobfuscating virtual-machine based obfuscations.

• It’s built on LLVM and Zydis (a disassembler library).

• We analyze the values, pre-optimizations, pattern matching, KnownBits analysis.

• If it still fails, optionally we can try Z3 solver.

Output Quality
Let’s see how Mergen performs on target binaries.

Our targets:

1- simple target binary

2- flattened code

3- example vm-obfuscated code

4- flattened code protected by VMP

It’s fast
flattened_code.vmp.exe (linear version)

Triton : 32 seconds (87s SE+opt)

Mergen : 891.569ms (1612.96ms SE + opt)

Why Mergen is faster?
Why Mergen is faster?

- Proving is slow.

Instead:

- Find a way to re-use simplification rules like KnownBits, pattern matching etc.

- Once you prove an expression, you dont have to prove again, you can re-use it.

Improvements
• It’s not perfect, hand made instruction semantics are not 100% accurate.

• It will not solve all the MBA’s (Mixed Boolean Arithmetics). It tries to solve cfg and run usual
passes.

• Some MBA’s can confuse Mergen.

Future ideas
• Lazy eval; we dont have to calculate everything.

• Better pattern matching; dump expressions and rewrite them so its easy to integrate.

Alternative usage ideas?
•Sanitizer

•Fuzzer

•Obfuscation

Conclusion
• You can use LLVM as a symbolic execution engine without too much relying on a solver.

• LLVM is able to optimize commercial VM-based obfuscations.

• Proving is slow, but once you prove an expression, you can generalize it and pattern match it.

	Varsayılan Bölüm
	Slayt 1: Understanding how Mergen deobfuscates VM-based obfuscations
	Slayt 2: The goal
	Slayt 3: What is Mergen
	Slayt 4: Output Quality
	Slayt 5: It’s fast
	Slayt 6: Why Mergen is faster?
	Slayt 7: Improvements
	Slayt 8: Future ideas
	Slayt 9: Alternative usage ideas?
	Slayt 10: Conclusion

